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ABSTRACT 

This study presents a new sequential coupling strategy for geothermal reservoir simulation – modified sequential implicit (m-SFI) 

method. The m-SFI method was implemented and tested using the new GENeral Implicit Coupling framework (GENIC) within the 

Automatic-Differentiation General Purpose Research Simulator (AD-GPRS). This framework allows for the rapid prototyping and 

consistent testing for this new m-SFI method. In this work, we demonstrated how the m-SFI method performs for several challenging 

examples where a standard sequential formulation fails. In particular, we showed that for complex flow regimes, the m-SFI method 

takes a similar number of time steps as the fully implicit method (FIM). It was found that for cases where accurate front prediction is 

possible and the two-phase region is limited, such as strictly injection or production problems, the m-SFI approach outperforms FIM. 

However, for a reservoir with mostly two-phases, the overall performance of the m-SFI method is more expensive than FIM due to the 

increased cost of the sequential iterations.  

1. INTRODUCTION 

Geothermal simulation plays a crucial part in the management and development of a geothermal field (O'Sullivan et al., 2001). The 

nonlinearities arising from the multiphase fluid modeling and complexities from the geology result in significant numerical convergence 

issues (Magnusdottir 2013, Noy et al. 2012). This problem of numerical convergence is intensified in inverse modeling and uncertainty 

quantification where an ensemble of simulations are run, thus there is a need for fast and robust convergent simulations.  

One of the key difficulties for the numerical convergence in geothermal simulations is due to the tight coupling between the mass and 

energy conservation equations originating from the complex thermodynamic relationships that govern the fluid properties. Additionally, 

phase change can occur frequently resulting in sharp discontinuities in fluid property calculations. To address this strong coupling, a 

common approach (Pruess et al., 1999, Zaydullin et al., 2014) is to use a fully coupled and fully implicit method (FIM). Although the 

FIM ensures numerical stability in the problem, it does not guarantee nonlinear convergence. In addition, both of these conservation 

equations have parabolic and hyperbolic behavior. The system of equations is parabolic in the flow and conduction and hyperbolic in 

the transport of mass and energy. Coupling the different physics and flow mechanisms makes it difficult to investigate this nonlinear 

problem. A separation of the flow and thermal equations could reduce the severity of the nonlinear coupling difficulties and improve 

understanding of the problem. Depending on the coupling strength of the problem, separating these equations could also reduce the 

overall computational time, because this reduces the number of linear equations solved. However, problem decoupling could also 

increase the number of iterations when the coupling is too strong. This result was shown in the geomechanics problem where a fixed-

stress sequential coupling could often outperform a fully coupled strategy (Kim et al., 2009, Rin, 2017) for problems with weak 

coupling between flow and mechanics. 

Wong et al. (2017) investigated a sequential splitting of the flow and thermal equations and compared different coupling variable 

formulations in a sequential strategy. They found that a naive constant pressure approach performed the best for single-phase blocks and 

a constant density approach performed best for two-phase blocks. From this, a hybrid approach was proposed where constant pressure 

was used for single-phase blocks and a constant density was used for two-phase blocks. This hybrid approach performed the best out of 

all the sequential strategies that were investigated. However, it was shown that for more challenging problems the fully coupled fully 

implicit method performs significantly better than any of the sequential schemes implemented.  

This work aimed to build upon the findings in Wong et al. (2017) to develop a modified sequential method that can overcome the poor 

convergence in the previously described sequential strategies. Specifically, this work proposed a modified sequential fully implicit 

method (m-SFI) method for geothermal simulations. This m-SFI method was inspired by a similar m-SFI method (Moncorge et al. 

2017) proposed for compositional flow simulations. In Moncorge et al. (2017), their scheme involved enriching the 'standard' pressure 

equations with coupling between the pressure and saturation/compositional variables for the blocks that had a strong coupling between 

flow and transport. Their criterion for defining strongly coupled blocks was blocks that had flow transfer between different fluid phases 

in the block and their neighboring cells. A similar intuition of including the strongly coupled blocks was used for the proposed m-SFI 

formulation that is described in later sections.  
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2. NUMERICAL FORMULATION 

2.1 Governing Equations 

For this study, only the flow and thermal equations of pure water in two-phase flow was considered. The flow and thermal equations are 

the mass and thermal conservation equations: 

𝐹 =
𝜕

𝜕𝑡
(𝜙(𝜌𝑤𝑆𝑤 + 𝜌𝑠𝑆𝑠)) − ∇. (𝜌𝑤𝑢𝑤 + 𝜌𝑠𝑢𝑠) − 𝑄𝑀 = 0 (1) 

and 

𝑇 =
𝜕

𝜕𝑡
((1 − 𝜙)𝜌𝑅𝑈𝑅 + 𝜙(𝜌𝑤𝑈𝑤𝑆𝑤 + 𝜌𝑠𝑈𝑠𝑆𝑠))

− ∇. (𝜌𝑤ℎ𝑠𝑢𝑤 + 𝜌𝑠ℎ𝑠𝑢𝑠) − ∇. (𝐾∇𝑇) − 𝑄𝐸

= 0 

(2) 

where: 

 𝜙 is the porosity of the rock 

 𝜌𝑘 is the mass density of phase 𝑘 

 𝑆𝑘 is the saturation of phase 𝑘 

 𝑢𝑘 is the velocity of phase 𝑘 

 𝑄 is the source/sink term 

 ℎ𝑘 is the enthalpy of phase 𝑘 

 𝑈𝑘 is the internal energy of phase 𝑘 

 𝐾 is the total conductivity of the fluid and rock 

Here the subscripts 𝑤/𝑠 represent the two phases water and steam, and the subscript 𝑅 represents the rock. Both 𝜌𝑘 , ℎ𝑘 in each phase 

depend on the phase state of the fluid. The thermodynamic parameters that were used for this study had all the parameters as a function 

of 𝑝 and ℎ of the block (Faust and Mercer, 1979). 

In addition to these two conservation equations, the saturation constraint must be satisfied, the sum of all the phase saturations is equal 

to one. 

 𝑆𝑤 + 𝑆𝑠 = 1 (3) 

2.2 Darcy’s Law 

To model the velocity of each phase, Darcy’s law was used to describe the flow through the porous media: 

𝑢𝑘 = −
𝑘𝑘𝑟𝑘

𝜇𝑘
∇(𝑝𝑘 + 𝜌𝑘𝑔𝑧) (4) 

where: 

 𝑢𝑘 is the superficial velocity of phase k 

 𝑘 is the rock permeability 

 𝑘𝑟𝑘 is the relative permeability of phase k 

 𝜇𝑘 is the viscosity of phase k 

 𝑝𝑘 is the pressure of phase k 

 𝑔 is the gravitational constant 

 𝑧 is the direction of the gravity 

 𝑘 represents either the water phase or steam phase 

The two-point flux approximation (TPFA) finite volume method and a fully implicit method was implemented to discretize the flow and 

thermal conservation equations (Equations 1 and 2) in space and time. The analysis for this entire study will use the phase-based, single 

point upstream weighted TPFA scheme. 

2.2 Fully Coupled Formulation 

The finite volume approximation results in the system of nonlinear equations for flow and thermal energy. 

𝑅𝐹
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) =  (𝜙(𝜌𝑤𝑆𝑤 + 𝜌𝑠𝑆𝑠))

𝑛+1
− (𝜙(𝜌𝑤𝑆𝑤 + 𝜌𝑠𝑆𝑠))

𝑛

− ∇. (𝜌𝑤𝑢𝑤 + 𝜌𝑠𝑢𝑠)
𝑛+1 − 𝑄𝑀

𝑛+1 = 0 
(5) 

and 
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𝑅𝑇
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) =  ((1 − 𝜙)𝜌𝑅𝑈𝑅 + 𝜙(𝜌𝑤𝑈𝑤𝑆𝑤 + 𝜌𝑠𝑈𝑠𝑆𝑠))

𝑛+1
 

− ((1 − 𝜙)𝜌𝑅𝑈𝑅 + 𝜙(𝜌𝑤𝑈𝑤𝑆𝑤 + 𝜌𝑠𝑈𝑠𝑆𝑠))
𝑛

− ∇. (𝜌𝑤ℎ𝑠𝑢𝑤 + 𝜌𝑠ℎ𝑠𝑢𝑠)
𝑛+1 − ∇. (𝐾∇𝑇)𝑛+1

− 𝑄𝐸
𝑛+1 = 0 

(6) 

Here the variables 𝑥𝐹
𝑛+1, 𝑥𝑇

𝑛+1 represents the primary variables for the flow and thermal equations at the time level (𝑛 + 1). The typical 

fully implicit (FIM) involves solving all the residual equations simultaneously. 

𝑅𝐹
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) = 0 

𝑅𝑇
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) = 0 

(7) 

Using Newton’s method to solve this system of nonlinear equations this leads to: 

[
 
 
 
𝜕𝑅𝐹

𝜕𝑥𝐹

𝜕𝑅𝐹

𝜕𝑥𝑇

𝜕𝑅𝑇

𝜕𝑥𝐹

𝜕𝑅𝑇

𝜕𝑥𝑇 ]
 
 
 

[
𝛿𝑥𝐹

𝛿𝑥𝑇
] = − [

𝑅𝐹

𝑅𝑇
] (8) 

Here we used pressure and total enthalpy (𝑥𝐹 ≔ 𝑝, 𝑥𝑇 ≔ ℎ) as the primary variables (Wong et al., 2016). 

2.3 Modified Sequential Fully Implicit Formulation 

For the modified sequential fully implicit formulation (m-SFI), the flow and thermal equations are solved separately for their respective 

primary variables 𝑥𝐹 , 𝑥𝑇. The main difference between the modified sequential fully implicit method and the standard sequential 

implicit method is that in the first step where flow is solved, a subset of the thermal equations are included in this step. For this study, 

we only examined a sequential formulation for a pressure-enthalpy formulation as described in Wong et al. (2016), although a 

sequential formulation for using natural variables (Coats, 1980) is possible. The pressure-enthalpy formulation was selected as it does 

not require any variable switching and thus allows for a simpler implementation and analysis for this method. It is important to note that 

this sequential formulation is iteratively coupled until convergence is reached for both the flow and thermal equation. The steps for the 

m-SFI are as follows: 

Step 1: Solve: 

𝑅𝐹
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) = 0 

𝑅𝑇
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1) = 0 

(9) 

for blocks in 𝑀1, and: 

 

𝑅𝐹
𝑛+1(𝑥𝐹

𝑛+1, 𝑥𝑇
𝑛+1(δℎ𝑛+1 = 0)) = 0 

(10) 

for the remaining blocks not in 𝑀1. 

This involves solving the flow equation with a variable 𝛿ℎ = 0 for those blocks that are not in the domain 𝑀1, the choice of this variable 

does affect the convergence, but because all of these blocks are at single-phase, a constant enthalpy was chosen. Once we have the 

solution, we use that as the initial guess to the solution of the thermal equation. 

Step 2: Solve: 

𝑅𝑇
𝑛+1(𝑥𝐹(𝛿𝑝 = 0), 𝑥𝑇

𝑛+1) = 0 (11) 

for blocks in 𝑀2 

This involves solving the thermal residual equations for the blocks in 𝑀2 while assuming 𝛿𝑝 = 0 for those blocks. The choice of 𝑀1  

and 𝑀2 is the focus of this work. In both steps we are solving a system of nonlinear equations which is solved using Newton’s method. 

These two steps (Equation 9) and 2 (Equation 10) are repeated sequentially until convergence. 

2.3.1 Subdomain definition 

We define 𝑀1 as the subdomain that has strong coupling between the flow and thermal equations and 𝑀2 is the weakly coupled domain. 

In this work we investigated different definitions of these strongly coupled and weakly coupled domains. We measured the strength of 

the coupling based on the Courant-Friedrichs-Lewy (CFL) of the block and the phase state of the block. 

CFL =
Δ𝑡𝑄

𝑃𝑉
  (12) 

where: 
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 Δ𝑡 is the maximum time step 

 𝑄 is the volume injection rate 

 𝑃𝑉 is the pore volume of the block 

We define a block 𝑖 to be in 𝑀1 if any of the below conditions are satisfied: 

 CFLi > CFLtol OR Number Phases of block 𝑖 > 1 OR A well perforation penetrates block 𝑖 

We also investigated adding all the neighboring blocks that satisfy the above criterion. This was to limit the discontinuities between the 

flow and thermal steps. We refer to this strategy as m-SFI-N.  

The criterion for 𝑀2 is the complement of 𝑀1: 

 CFLi < CFLtol AND Number Phases of block 𝑖 == 1 AND no well perforation penetrates block 𝑖 

3. IMPLEMENTATION 

3.1 AD-GPRS 

The implementation and comparisons for this study was completed using AD-GPRS. AD-GPRS was designed to have a general 

sequential-implicit coupling framework for solving multiphysics problems for reservoir simulation (Rin et al., 2017). This framework 

allows the consistent testing and development of different sequential implicit for different coupling strategies to obtain robust and 

scalable multiphysics problems such as geothermal simulations (Wong et al., 2015, Wong et al., 2016). This work exploited the 

integration of the geothermal module in AD-GPRS to the next generation general sequential framework in AD-GPRS and tested the m-

SFI methods utilizing the sequential framework (Rin et al., 2017). The framework employed a modular design by splitting the flow and 

thermal conservation equations into a set of two subproblems. The key components of this framework involve using a subproblem tree 

structure with abstract computational domains to organize the unknowns related to each subproblem. This flexible framework is the core 

of the investigation the m-SFI method. This both allows for minimal code duplication but also provides a consistent framework for the 

comparisons. 

One of the key flexibilities of the framework is the inclusion of mapping operators. In GENIC, a mapping operator specifies the active 

domain that can change dynamically with each Newton iteration. This mapping operator allows for the flexibility in testing different 

criteria and definitions for the 𝑀1 and 𝑀2 subdomains.  

In addition to the general implicit coupling framework, Automatic-Differentiation General Purpose Research Simulator (AD-GPRS) 

(Voskov and Tchelepi, 2012, Zhou, 2012) has a wide range of capabilities in advanced physical modeling and numerical methods. 

These capabilities include thermal-compositional, EOS-based, multiphase flow and transport models (Zaydullin et al., 2014; Voskov et 

al., 2016), generalized nonlinear formulations (Voskov, 2012, Zaydullin et al., 2013), multistage linear solvers (Zhou et al., 2013, 

Klevtsov et al., 2016), complex multisegment wells (Zhou, 2012), and nonlinear mechanical deformation models (Garipov et al., 2015, 

2016). 

4. NUMERICAL COMPARISONS 

Here we considered two three-dimensional problems that each have the characteristics of a challenging geothermal model. The first 

problem has three-dimensional and strong two-phase gravitational effects and the second is a three-dimensional problem with strong 

geological heterogeneity. The verification of the fully implicit and sequential implicit results was done in Wong et al. (2017) where the 

fully implicit, sequential results were compared with analytical, semianalytical and TOUGH2 simulations. Here the focus will be to 

compare the convergence properties of m-SFI method with the fully implicit solution. 

To decouple the effects of the linear solver solution on the nonlinear solver, a direct solver PARDISO (Petra et al., 2014a, Petra et al., 

2014b, Schenk and Gärtner, 2004) was used for the linear solver. In all the cases, the maximum sequential iterations was set to be 30, 

the maximum nonlinear iterations was set to 20, and the convergence tolerance for the flow and thermal equations was set to 10−4. 

However, the use of a direct solver limits any strong conclusions on the computational speed up. 
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4.1 3D Two-phase Gravity Drainage Problem 

 

Figure 1: Schematic of the three-dimensional two-phase gravity drainage model 

4.1.1 Model Description and Verification 

The first test case is a three-dimensional model based on a reservoir model from the 1980 Code Comparison Study (Stanford 

Geothermal Program, 1980). This reservoir model consists of single-phase liquid water with a two-phase zone of immobile steam 

wedged between a cold and hot water region. Fluid is produced from a single well that is completed below the two-phase zone. The rock 

and reservoir properties (Table 1) were selected such that the boiling in the well occurs after a certain period of production. The 

parameters for this study are relatively homogeneous but due to the complex fluid behavior that is typical of geothermal fields it is 

suitable as a test case.  A full discussion on the problem description can be found in Stanford Geothermal Program (1980). The 

production well was completed in the corner block and perforates layers 16-20. Water was produced at a rate of 500m3/day for 10 years. 

Figure 1 shows a schematic of the well and the reservoir. 

Table 1: Reservoir properties for the 3D Two-phase Gravity Drainage Problem 

Reservoir dimensions (m) 4000 × 5000 × 1800 

Porosity in each layer [0.2,0.25,0.25,0.25,0.2,0.2] 

Layer permeability in 𝒙 and 𝒚 directions (md) [100,200,200,200,100,100] 

Layer permeability in 𝒛 direction  [2,50,50,50,2,2] 

Layer gas saturation [0,0.15,0,0,0,0] 

Depth at layer top (m) [150,450,750,1050,1350,1650] 

Temperature at layer top (𝐊) [433.15,553.15,… ,553.15] 

Pressure at layer top (bar) [40,64,88,112,136,160] 

 

The final pressure and temperature distributions are shown in Figure 2. The relative difference between the pressure and temperature for 

FIM and m-SFI is shown in Figure 3. We can see that there is very close agreement where the difference is at most 0.01%. This is 

expected since the FIM and m-SFI method both require the flow and thermal residual equations to be below a convergence tolerance, 

thus if converged they should have close agreement. 
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Figure 2: 3D Pressure and temperature distribution after 10 years of production at 16th layer for 20× 𝟒𝟎 × 𝟑𝟔 blocks 

 

 

Figure 3: Relative error between FIM and m-SFI-N approach for pressure and temperature after 10 years at 16th layer for 20×
𝟒𝟎 × 𝟑𝟔 blocks 

4.1.2 Nonlinear Convergence Comparison 

The focus of this section is to compare the performance of the m-SFI method with FIM for this test case. Table 2 shows the nonlinear 

solver performance for the different strategies tested. We see that for this specific test case, regardless of the 𝐂𝐅𝐋𝐭𝐨𝐥 selected, the m-SFI 

methods converge to the same maximum CFL (maximum CFL is defined as the maximum CFL for all the blocks for all the time steps) 

as the FIM and has less wasted time steps than the FIM. We also see that the m-SFI method is able to overcome the limitations that the 

sequential strategy had for complex problems and decreased the number of sequential iterations per timestep by 10 times. For this 

specific case, a 𝐂𝐅𝐋𝐭𝐨𝐥 of [0.1,1,10] all resulted in about the same performance. This is because at this grid resolution, the complexity is 

not sufficient to demonstrate the effects of different 𝐂𝐅𝐋𝐭𝐨𝐥 values or the inclusion of neighboring blocks. 
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Table 2: Comparison of the nonlinear solver performance for the different coupling schemes for 10×20×18 blocks 

   m-SFI 

 FIM SEQ 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏𝟎 m-SFI-N 

Number of timesteps 40 215 39 39 39 39 

Total Newton Iterations 136 5050 306 308 324 213 

Total sequential iterations 0 6681 134 136 137 105 

Sequential iterations/timesteps - 31.1 3.4 3.5 3.5 2.7 

Number of timesteps wasted 4 201 1 1 1 1 

% of blocks in 𝑴𝟏 100 0 27.89 19.25 19.06 30.30 

Maximum CFL 5.343 2.707 5.342 5.342 5.342 5.342 

 

The original grid was coarsened and refined to test how the m-SFI method performs with different CFLtol. Here we looked at a low 

resolution (4 × 5 × 6 blocks) and a high resolution (20 × 40 × 36 blocks) grid. Table 3 shows the results of the different resolutions for 

the different methods. For the low resolution, we see that similar to the previous case, the m-SFI methods all have the same time 

stepping result and converge for the same maximum CFL. However for the refined case (H), only the m-SFI-N method has the same 

time stepping result as the fully coupled method. We notice that regardless of the CFLtol selected, the number of time steps is still higher 

than the fully coupled and m-SFI-N method. We see that now as there more phase change and there is a sharper boundary to the two-

phase region, having the additional layer of neighboring cells significantly increases the convergence properties. We note that at the 

high resolution, the m-SFI-N method performs 10% faster than the fully coupled method. This computational speed up is a combination 

of the relatively low number of sequential iterations per time step and small % of blocks in 𝑀1. As mentioned earlier, since only a direct 

linear solver is used, it is difficult to conclude that the m-SFI-N can indeed outperform FIM.  

 

Table 3: Comparison of the nonlinear solver performance for two-phase gravity drainage problem at different grid resolutions 

(L: Low, H: High) 

   m-SFI 

 FIM 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏 𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏𝟎 m-SFI-N 

Grid resolution L H L H L H L H L H 

Number of timesteps 19 162 19 584 19 592 19 592 19 162 

Total Newton Iterations 28 454 67 1982 67 2004 67 2016 41 585 

Total Sequential Iterations - - 49 1901 49 1918 49 1946 40 470 

Sequential iterations/timesteps 2.6 3.3 2.6 3.2 2.6 3.3 2.1 2.9 2.6 3.3 

Number of time steps wasted 0 1 0 433 0 436 0 436 0 1 

% of blocks in 𝑴𝟏 100 100 19.9 16.8 17.5 15.8 17.5 15.2 50.8 24.4 

Maximum CFL 0.51 4.07 0.51 4.0 0.51 4.07 0.5 4.07 0.51 4.07 

 

4.2 SPE 10 Three-dimensional Problem 

4.2.1 Model Description and Verification 

The permeability and porosity distribution (Figure 5) were taken from the top four layers of the SPE 10 test case problem (Christie and 

Blunt 2001), Table 4 shows the reservoir properties for this SPE10 problem. For this test case, the domain was discretized using 60 ×
220 × 4 blocks. Uniform pressure (50 bar), temperature (523.26 K) and water saturation (1.0) was imposed as the initial conditions. 

There were four wells specified in this problem, two injectors (P = 90 bar, T = 433.15K) and two producers (P = 30 bar) all operating 
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under bottom hole pressure control. This problem is highly heterogeneous and follows a Gaussian distribution with high contrast and 

channelized rock structure. Due to this heterogeneity, this is challenging even for the fully coupled methods and has convergence issues 

for more aggressive time step schemes. The final pressure and temperature solution for the simulated period is presented in Figure 5. 

 

Figure 4: Schematic of SPE 10 problem: Permeability (Top) and Porosity (Bottom) 

Table 4: Reservoir properties for 3D SPE 10 Problem 

Reservoir dimensions (m) 365.8×670.6× 51.8 

Initial reservoir pressure (bar) 50 

Initial reservoir (K) 523.26 

BHP (bar) 30 for producers, 90 for injectors 

Injection temperature (K) 433.15 

Relative phase permeability 𝑘𝑟𝑗 = 𝑆𝑗
2 

Rock thermal expansion (1/K) 2 × 10−5 

Rock heat capacity (kJ/(kg K)) 2000.0 

Rock thermal conductivity (kJ/(m day K)) 150.0 

Water thermal conductivity (kJ/(m day K)) 53.5 

Gas thermal conductivity (kJ/(m day K)) 3.59 
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Figure 5: Pressure (left) and temperature (right) distribution for 60 220 4 grid after 100 days at top layer 

 

Figure 6: Relative difference between FIM and m-SFI-N approach for pressure (left) and temperature (right) distribution for 

60×220×4 grid after 100 days at top layer 

We see in Figure 6, the relative difference between the FIM and m-SFI-N method is slightly higher than the previous two-phase gravity 

drainage problem. For this specific scenario, the error is 10−3% for pressure and at most 0.5% for the temperature. This error is 

localized at the temperature front.  

4.2.2 Nonlinear Convergence Comparison 

Table 5 shows the results of the different methods for a grid structure of 30 × 110 × 2 blocks. Here we notice that the m-SFI-N at a 

CFLtol of 0.1 requires about half the number of time steps in comparison to a CFLtol of 1. This is because with a smaller CFL, this 

means we have a larger number of blocks in each iteration thus are able to capture the front better. We see that the percentage of blocks 

is more for the case where CFLtol = 1; this is because of the number of time step cuts and thus more iterations are spent where the front 

has spread. Due to the injection and production fronts in this problem, we notice that m-SFI (CFLtol = 0.1) performs better than m-SFI-

N (CFLtol = 1) due to the need to predict where the front is accurately. 
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Table 5: Comparison of the nonlinear solver performance for the different coupling schemes for 30×110×2 blocks 

 FIM m-SFI (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏) m-SFI-N (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏) m-SFI-N (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏) 

Number of timesteps 53 75 111 53 

Total Newton iterations 179 1869 3974 793 

Total sequential iterations - 797 1599 377 

Sequential iterations/timesteps - 10.6 14.4 7.1 

Number of timesteps wasted 9 37 81 8` 

% of blocks in 𝑴𝟏 100 71.75 74.81 67.42 

Normalized Run time 1 8.3 17.43 3.15 

Maximum CFL 44.13 44.24 42.04 44.18 

 

Table 6 shows the results for a low (15 × 55 × 1) and high (60 × 220 × 4) grid resolution. In order to coarsen and refine the grid, 

volume averaged properties were used for the porosity and permeability. Here we see that for a low resolution, all four of the methods 

result in the same number of timesteps to complete the simulation. For the high grid resolution, only the m-SFI-N method had a 

comparable maximum CFL and similar number of time steps. However, all the m-SFI cases are four times slower compared to FIM. 

This is due to the higher number of sequential iterations per time step than in the previous test case and the larger percentage of blocks 

in the M1 subdomain, thus having a larger cost per sequential step. In summary, we have found that for this case where there is a large 

proportion of two-phase blocks, the m-SFI method performs poorly, because most blocks have a strong coupling, there is not much gain 

in splitting the flow and thermal equations sequentially. 

Table 6: Comparison of the nonlinear solver performance for two-phase gravity drainage problem at different grid resolutions 

(L: Low, H: High) 

 FIM m-SFI (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏) m-SFI (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟏) m-SFI-N (𝐂𝐅𝐋𝐭𝐨𝐥 = 𝟎. 𝟏) 

 L H L H L H L H 

Number of timesteps 49 114 49 126 49 177 49 115 

Total Newton iterations 77 443 708 4077 1061 8203 708 3412 

Total Sequential Iterations - - 371 1509 476 2969 371 1323 

Sequential iterations/timesteps - - 7.6 12.0 9.7 16.8 7.6 11.5 

Number of timesteps wasted 0 19 0 40 0 106 0 21 

% of Blocks in 𝑴𝟏 100 100 55.18 70.62 22.13 68.6 55.2 74.2 

Normalized run time 1 1 4.92 4.83 6.69 10.2 4.91 4.15 

Maximum CFL 59.4 62.4 59.4 62.2 59.4 62.7 59.4 62.4 

 

5. CONCLUSIONS 

In this study, we investigated a new modified sequential coupling approach for geothermal simulations. We demonstrated the capability 

of the m-SFI method on two difficult problems where the sequential formulation described in Wong et al. (2017) performed poorly. For 

these challenging problems, the m-SFI achieved a number of time steps comparable to a fully coupled method. For cases where accurate 

front prediction is possible and the two-phase region is small, the m-SFI approach outperformed the FIM. However, for cases where the 

domain is mostly two-phase, the overall performance of the m-SFI is more expensive than the FIM due to the increased sequential 

iterations per time step and the cost of each sequential step. 
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